欢迎访问 CPEM全国电力设备管理网!
官方微信|设为首页|加入收藏
cpem标语
   
2024无人机
金巡奖
  • 金智信息
  • 国电南自
  • 深圳普宙
  • 联想
  • 国网信通
  • 艾睿光电
当前位置:首页 > 电力资讯 > 企业动态

量子通信(量子密钥分发)有什么用处?安全传输密钥?

2022-10-19分类:电力资讯 / 企业动态来源:百度资讯
【CPEM全国电力设备管理网】

我国 量子通信 技术的发展现状及未来趋势

量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。

国政府高度重视包括量子通信在内的量子技术的发展。量子通信已经被列入《国家中长期科学和技术发展规划纲要(2006-2020年)》,而其中的量子通信,属于国家重点发展的具有引领新兴产业发展潜力的前沿技术,已被列入国家十二五科技发展规划纲要中。国家十二五科技发展规划纲要指出,在信息技术领域要突破光子信息处理、量子通信、量子计算等核心关键技术;2013年6月20日,中国科学院研究报告,即《科技发展新态势与面向2020年的战略选择》指出,中国在2020年左右可能产生的19项科技突破里面,量子通信(及量子计算)排在首位。

我国量子通信技术的发展现状

(1)中国的量子通信发展经历了4个阶段,从95年到2000年是学习研究阶段,95年首次实现了量子密钥分发实验,在2000年完成了单模光纤1.1Km的量子密钥分发实验;2001年到2005年中国经历了量子通信技术的快速发展阶段,先后实现了50Km和125Km的量子密钥分发实验;2006年到2010年进入了初步尝试阶段,分别实现了100Km的量子密钥分发实验和16Km的自由空间量子态隐形传输。先后在芜湖建成芜湖量子政务网和在合肥建成世界首个光量子电话网络 。2010年至今进入了大规模应用阶段。

(2) 2010年,在合肥建成首个城域量子通信实验示范网。具有46个节点的量子通信网覆盖 合肥市 主城区,使用光纤约1700公里,通过6个接入交换和集控站,连接40组量子电话用户和16组量子视频用户。主要用户为对信息安全要求较高的政府机关、金融机构、医疗机构、军工企业及科研院所等。

(3)2011年,研发出兼容经典激光通信的星地量子通信系统,实现了星地之间同时进行量子通信和经典激光通信。

(4)2012年,在北京建成金融信息量子通信验证网,该验证网实现了高保密性视频语音通信、实时文字交互和高速数据文件传输等应用。

(5)2014年,济南量子通信网实验网正式投入使用。包括三个集控站,56个用户节点。

(6)2016年,建立世界首条量子信息保密干线京沪干线。总长2000余公里,从北京出发,经过济南、合肥,到达上海,利用这一广域光纤量子通信网络,京沪两地的金融、政务等机构能进行保密通信,实现了城际量子通信。

(7)2016年8月,由中国科学家自主研制的世界首颗量子科学实验卫星墨子号在 酒泉卫星发射中心 成功发射,为建立全球的光量子通信网络奠定了坚实的基础。

(8)我国计划到2020年实现亚洲与欧洲的洲际量子密钥分发,建成联接亚洲与欧洲的洲际量子通信网,到2030年建成全球化的广域量子通信网络。

目前,我国在量子密钥分发的实用化方面已跻身世界前列。最近几年,新技术突破不断涌现,自主研发的量子路由器、量子程控交换机及终端设备已能满足实用化要求。

2. 我国量子通信技术的未来趋势

量子通信技术的发展十分迅猛,在民用方面,已在部分城市建立了量子通信网;但是在军用方面,进入工程普及还需要3~5年时间。但从量子通信具备的优势来看,丝毫不能阻挡量子通信在未来军事上的大量应用。

(1)一是用于建立远程通信网。由于 单光子 在现在的硅光纤和陆上自由空间中的传输距离受到了限制,使量子通信的距离目前只有百余公里,无法实现全球范围意义上的量子通信。这一问题可以通过量子存储技术与量子纠缠交换和纯化技术的结合,做成量子中继器,突破光纤和陆上自由空间链路通信距离短的限制,延伸量子通信距离,实现真正意义上的全球量子通信。

(2)二是用于建立深海军事通信。岸潜通信,一直是困扰军事通信的一大难题。目前使用的甚长波通信系统,勉强能够达到与水下百米左右的潜艇的通信,但其系统非常庞大,仅天线就长达50千米以上,抗毁性差,通信效率极低,30分钟只能通几个字符,量子通信不同于传统的波通信,量子通信因其与传输媒介无关,不受海水影响,在同等条件下,获得可靠通信所需的信噪比比光、电等传统通信手段低30~40分贝左右,利用量子通信可以开发出有效的水下军事通信手段,为远洋深海安全通信开辟了一条崭新的途径。

(3)三是建立超光速、大容量军事信息网。军事信息网需要大容量、高速率传输及按需共享能力。而量子通信就具有超大信道容量、超高通信速率和信息高效率的特点。随着量子通信技术的研究突破和日趋成熟,可以利用量子隐形传态建立满足军事特殊需求的超光速量子通信网络。利用量子通信网络实现大容量、高速率信息传输与处理及按需共享,满足指挥与控制系统对信息综合分析及辅助决策的需求,满足信息作战的需要。

3. 从量子通信技术发展看其在信息安全中的应用

量子通信技术是量子信息技术中的重要分支,是利用 量子态 作为信息载体进行信息交互的通信技术。其特点体现在从三个方面超越现有通信技术的能力:

一是信息传输安全。基于量子通信技术我们可实现QKD,其安全性由量子状态的测不准、不可分割、不可复制等物理特性来保障。基于QKD提供的共享对称密钥,结合现代密码算法(SM4、AES等)或者一次性密码本(One-time-pad,OTP),可以在信息机密性上发挥作用;结合认证及其他密码算法,还可以在机密性之外的信息真实性和完整性等其他密码需求上发挥作用。

二是量子态的传输。基于量子通信技术我们可以实现量子隐形传态,用于有效的传递量子态,这也是现有的通信技术无法替代的,是未来分布式量子计算、分布式量子传感器等应用的实现基础。

三是提高信道容量。我们可以利用量子叠加等信息并行处理特征来设计新的通信编码方式,以期突破现有通信的信道容量极限。目前已有量子超密集编码等理论证明可获得超越经典极限的量子信道容量,但尚未有可实用化的技术落地。

这些能力的共性来源于量子通信通过量子态为信息载体,量子态本身的特别之处带来了量子通信和信息处理的一系列优势,从而有别于基于电磁波宏观特性来承载信息的现有通信技术。

谈及量子通信发展的未来,一幅 量子互联网 的蓝图展现在我们面前,其不是对现有互联网的替代,而是为互联网加上新功能的新型基础设施。如果说QKD网络是量子互联网的初级阶段,那么其最终目标将是全量子网络,是用量子隐形传态或量子纠缠交换等技术作为链接,将量子计算机、量子传感器、QKD设备、终端用户等节点连为一体,产生、传输、使用量子资源,面向计算、感知和信息安全的新型网络。其中,信息安全是贯穿量子网络发展始终的核心功能。未来,量子互联网将在量子中继的帮助下实现多用户、远距离的量子纠缠共享,进而可以利用量子纠缠来实现QKD,并实现量子安全应用。在量子中继技术成熟之前,也就是量子互联网的初级阶段,QKD链路与经典的可信中继技术的结合是目前实现广域可扩展QKD光纤网络的唯一可行方案。其中可信中继的安全性已有相关的安全增强技术及工程要求进行保障,其标准化也是QKD网络标准工作中的重要组成部分。

国际标准组织ITU-T、ISO/IEC JTC1、IETF、ETSI等都在开展QKD的标准化工作。2019年10月, 国际电信联盟 标准化部门(ITU-T)正式发布了首个QKD网络国际标准 Y.3800Overview on networks supporting quantum key distribution(支持量子密钥分发的网络综述)。该标准对QKD网络的概念结构及基本功能进行了描述,并且明确指出可信中继是目前唯一已知的被广泛应用于远距离QKD光纤网络的解决方案。基于Y.3800标准建议书达成的国际共识,ITU-T正在抓紧制定QKD相关的一系列国际标准,包括:QKD网络功能要求、安全要求、密钥管理、商业模型、QoS通用要求、QoS保障要求,等等。

近年来,国际上多个国家和地区发布了量子科技发展战略,规划量子互联网发展,并启动了QKD网络的工程实践和应用示范。例如,美国白宫国家量子协调办公室于2020年2月发布的《 美国量子网络战略愿景 》报告指出:探索如何建立量子互联网——一个由量子计算机和其他量子设备组成的庞大网络,将促进新技术的发展,加速当今互联网的发展,提高我们的通信安全性,并使计算技术取得巨大进步。 再如,欧盟委员会2020年3月发布《 量子旗舰项目战略研究计划 》中提到:实现量子互联网是长期目标??为欧洲公民提供更安全的电信通讯和数据存储、改善医疗保健以及更强的计算能力。这份报告中明确了量子通信未来3年的路线图,重点包括:针对基于可信中继QKD网络,开发用例和业务模型、经济高效且可扩展的系统、密钥管理和应用接口等软件;研究可信节点网络的网络功能和互操作性;为网络性能、应用、协议和软件开发测试套件;演示和验证QKD、量子随机数等在基础设施、物联网和5G中的应用等等。

此外,欧盟日前发布的研究报告JRC118150QKD现网实现中指出,亚洲的中、日、韩,欧洲的奥地利、瑞士、意大利、西班牙、英国、俄罗斯、波兰,北美洲的美国、加拿大,非洲的南非等国,均部署了基于可信中继的QKD试验或商用网络。

4. 量子通信技术助力数字新基建安全发展

在数字新基建的关键领域:5G、物联网、工业互联网、卫星互联网、人工智能、云计算、 区块链 等,QKD作为信息安全保障的有力手段,具有广泛的应用潜力。例如在5G方面,2019年英国量子通信中心联合布里斯托大学,基于英国5G测试网开展了一系列5G+QKD融合技术试验,在5G测试网络中实现了量子安全的多域NFV编排器,以及基于QKD的Inter-DC数据安全传输等安全增强应用;2019年韩国SK电信将QKD技术用于其5G网络(首尔-大田段)的回传数据加密传输,并计划分阶段扩大应用范围。SK电信还首次实现了将QKD用于5G接入网,保护某车企智慧工厂关键数据传输的应用案例。在卫星互联网领域,基于QKD来实现星地、星间安全通信是极富潜力的解决方案,目前美欧多国将其作为重点方向研发,我国则是目前全球唯一能够实现星地量子通信的国家,处于领先地位,并有望在量子通信融合数字基础设施方面走在世界前列。

伴随技术的持续突破而不断升级,量子通信技术奔跑在"量子互联网"的征途上。未来的量子互联网除了QKD之外,还能实现其他的信息安全应用吗?答案是肯定的。利用网络上的量子资源,将可以继续充实和拓展量子密码的范畴。学术界已经提出了包括量子安全认证、量子数字签名、量子比特承诺以及量子安全存储等在内的多种量子密码技术理论方案。这些都需要 密码学 、量子物理、信息通信领域的科研和产业力量紧密合作,催生更新一代的密码技术,更广泛、更有力地支持未来形态的信息安全。

分享到:
相关文章
合作伙伴
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 10
  • 11
  • 12
  • 13

logo.png

CPEM全国电力设备管理网  © 2016 版权所有    ICP备案号:沪ICP备16049902号-7